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BUT BEFORE WE GET TO
EXPERIMENTAL DESIGN…



Usual approach for searchlight decoding:

Alternative approach for searchlight decoding:

Group-level 
Stats

Group-level 
Stats

General fMRI Preprocessing 

NormalizationSearchlight 
decoding Smoothing

SmoothingNormalization Searchlight 
decoding

Second approach required for between-subject analysis



Usual approach for whole-brain / ROI decoding:

Alternative approach for whole-brain / ROI decoding:

General fMRI Preprocessing

ROI decoding
Group-level 

Stats

Group-level 
StatsNormalization ROI decoding

Normalization

Second approach required for between-subject analysis



EXPERIMENTAL DESIGN



Goals of this Presentation

MVPA Design
• What are requirements for the experimental design of MVPA studies?

Minimize Noise, Maximize Signal
• How can we maximize the information we extract by our 

experimental design?

Confounds in MVPA studies
• What are possible confounds that we have to consider?
• How can we avoid these confounds?
• If we cannot avoid them: How can we detect and eliminate them?



Important Note

• How you later want to analyze your data can have 
important consequences for your design

• This presentation: strong focus on fMRI classification 
within subject (e.g. different conditions)

• But: Principles apply also to between subject classification 
or other modalities (e.g. EEG)



MVPA Workflow

Statistical Analysis

Classification

Type of Analysis

Preprocessing

Design and Data 
Aquisition



MVPA DESIGN: GENERAL



Design choices for Multivariate Decoding

Most design choices identical to univariate GLM
• duration of experiment (longer = better)
• scanner settings (TR, TE, flip angle, descending acquisition, …)
• high spatial resolution: unclear if benefit specific to multivariate

What you need to consider
• classification requires independence (or dependence balanced 

between classes) of training and test data
• often data dependencies exist that invalidate this assumption
• crucial for cross-validation: all conditions needed in all folds



Leave-One-Run Out Cross-Validation

Typical Analysis: Leave-one-run-out cross-validation

Reason: Non-independence within run can bias results

Mumford et al (2014) – Neuroimage



How Many Runs for Leave-One-Run Out?

Coutanche & Thompson-Schill (2012) – Neuroimage

Usually 6 to 12 runs, 4 runs is usually minimum

Many short runs Few long runs

Data variability more variable more stable

Amount of training data more training data less training data

Number often determined by condition balancing 
within run

When minimizing between-run differences: more runs better



HOW TO MINIMIZE NOISE AND
MAXIMIZE SIGNAL



Minimize Noise

• Assuming that source of information lies in fine-scale 
patterns, noise perturbations can destroy this information

• Most important sources of noise that affect fine-scale 
patterns:
– head motion
– physiological noise
– scanner-related effects

Example: Effect of displacement
on sampling of orientation columns

à motion correction only interpolates

Swisher et al (2010) – J Neurosci; Freeman & Heeger (2011) – J Neurosci



Maximize Signal: Design Efficiency

Design Efficiency

Goal: Maximize the pattern distinctness, 
i.e. increase between-class scatter or 
decrease within-class scatter
à Improving design efficiency of GLM 

for univariate contrast will maximize 
the distinctness also for MVPA

Voxel 2
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http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency

Additional advice:
For single-trial event-related analysis and short TR (< 2.5s), time-

locking onsets to TR can reduce between trial variability



Interim Summary

• Reducing noise in the acquisition may have a stronger 
benefit for multivariate analyses than univariate analyses, 
but benefit is still unclear

• Optimizing the design efficiency can improve the pattern 
distinctness

• Common software for doing this at the end of the 
presentation



THE PERVASIVENESS OF CONFOUNDS IN 
MVPA STUDIES



Confounds

Two classes of confounds:
1. Confounds in the experimental design
2. Confounds in the results

à Best practice is to avoid confounds before they happen
à We can avoid confounds in experimental design
à There are some confounds we cannot avoid, but can only 

control



Confounds in the Experimental Design

Typically disregarded issues can become a confound

Example: Classification of top-down visual attention

Confound: visual cue



Confounds in the Experimental Design

Typically disregarded issues can become a confound

Example: Classification of choice?

Confound: motor response

up or 
down?



Confounds in the Experimental Design

Solution 1: Exclude brain regions that confound responds to
• For motor confound: Exclude motor-related brain regions
• For visual confound: Exclude visually responsive regions

not recommended

But: Maybe unexpected brain region 
responds to confound? Maybe those 
regions respond to true effect?
And: Sometimes approach not possible



Confounds in the Experimental Design

Solution 2: Separate confound in time or through jitter
• For motor confound: Wait 20s with motor response
• For visual confound: Show cue jittered and model separately

not recommended

But: Pattern autocorrelation can last very long
And: Jitter only reduces confound, never eliminates it!



Confounds in the Experimental Design

Solution 3: Cross-classification
• For motor confound: Switch response modality, e.g. after each run
• Train classifier on data with one confound, test on data with other
• If above chance, then classifier generalizes across confound
• For visual confound: Use different cue

recommended if no better possibility

But: Less data available for training, i.e. 
possibly reduced sensitivity
And: Possible task-switching costs

up or 
down?

Train

Test

up or 
down?



Confounds in the Experimental Design

Solution 4: Cue Trick
• For motor confound: Use response-mapping rule
• Controls for confound by balancing
• For visual confound: Not always possible

recommended when possible

But: Requires training of subject

Hebart et al (2014) – Cerebral Cortex

if up,
press left
if down, 
press right

if up,
press right
if down,
press left

Rule 1

Rule 2



Confounds in the Experimental Design / Results

Different estimability of betas for class A vs. B problematic

Hebart & Baker (2017) – Neuroimage; Görgen et al (2017) – bioRxiV



Confounds in the Experimental Design / Results

Different estimability of betas for class A vs. B problematic

Result without any difference in mean pattern

Voxel 2

Vo
xe

l 1

equal variability different variability
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48% correct 70% correct

Voxel 2

Hebart & Baker (2017) – Neuroimage; Görgen et al (2017) – bioRxiV



Detection of Confounds

Example: Order confound

Görgen, Hebart, Allefeld, & Haynes (2017) – arXiv

Impossible to distinguish if effect:
1. true difference in A vs. B

or
2. based on fatigue (A first, B later)

A B

A B

A B

A B

1st 2nd



Detection of Confounds

Possible solution to order confound: Counterbalancing?
If region

responds to condition
but not confound

If region
responds to confound 

but not condition

A B

A B

A B

A B

1st 2nd

2nd 1st

1st 2nd

2nd 1st



Detection of Confounds

Possible solution to order confound: Counterbalancing?
If region

responds to condition
but not confound

If region
responds to confound 

but not condition

A B

A B

A B

A B

1st 2nd

opposite 
prediction = 
below chance!

testtest

trained
classifier

2nd 1st

1st 2nd

2nd 1st trained
classifier

✔



Detection of Confounds in Design

Same analysis approach (Görgen et al., arXiv)

• We do decoding analysis using cross-validation
• Cross-validation is a different statistical method than classical statistics
• To measure the influence of a confound, we need to apply the same 

statistical method to it

Univariate decoding on 
confounding variable, i.e. 
treat confound as data

Can become part of efficiency 
optimization if confound in 
design is assumed



Elimination of Confounds

Approach 1:  Balance confounds
• Do sub-classification on data
• Example: Representation of value in choice task

high low

chosen not 
chosen

vs

vs

Target

Confound

high lowvs

high lowvs

chosen

not chosen

average
accuracy

but: less sensitive than one classification (ameliorated by ensemble 
approach with repeated subsampling)
and: difficult to apply for continuous confounding variables



Elimination of Confounds

Approach 2: Add nuisance regressor to remove confound

Todd et al (2013) – Neuroimage; Woolgar et al (2014) – Neuroimage

A B RT

can introduce bias when control 
regressors correlated differently 
between classes

can lead to false sense of certainty 
that confound has been controlled



Summary

• Experimental design requires all conditions to be roughly 
equally present in all folds (e.g. runs)

• Confounds are difficult to deal with
• The cue trick is useful to decorrelate choices and button 

presses
• It is not easy to follow the own intuition to avoid confounds
• Below-chance accuracies (and false above-chance accuracies) 

can be explained by uncontrolled or badly-controlled 
confounds

• The same analysis approach provides a method for detecting 
confounds before they occur



(1) If you are planning an MVPA study or have MVPA data, think 
about possible confounds in your experimental design. How 
would you deal with them? Discuss them in your small group.

(2) Alternatively, design a very simple experiment where 
participants make choices to two different stimuli.
(a) How can you avoid confounding choices with button presses?
(b) Can you think of other confounds? How can you take these 
into account?

Study Question



Maximize Signal

Software for Design Efficiency
• Doug Greve: OptSeq

http://surfer.nmr.mgh.harvard.edu/optseq/
• Wager & Nichols: Genetic algorithm

https://github.com/canlab/CanlabCore
• No optimization algorithm, but easy and more flexible method to set 

up design matrix: 

http://martin-hebart.de/webpages/code/matlab.html
Suggestion: Brute-force repetition works well in general


